Nitroethylene: Synthesis of Novel 2-Nitroethylphosphonates

By DARSHAN RANGANATHAN,* C. BHUSHAN RAO, and SUBRAMANIA RANGANATHAN (Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India)

Summary In benzene, standard refrigerated solutions of nitroethylene are stable; in benzene-t-butyl alcohol, the self-reactivity of nitroethylene is moderated leading to the selective synthesis of novel 2-nitroethylphosphonates by a rare P¹¹¹ Michael addition. It is reported here that nitroethylene¹ is stable and that refrigerated standard solutions in benzene can be stored for at least six months without perceptible deterioration.²† Its tendency for lone pair initiated self-polymerization can be moderated using t-butyl alcohol as solvent.

† The characteristic ¹H n.m.r. spectrum of nitroethylene { δ (neat) 6.55 [dd, J 7 and 15 Hz, =C(NO₂)H], 5.85 (dd, J 15 and 2 Hz, syn-H), and 5.22 [br d, J 7 Hz, anti-H (the 2 Hz gem coupling is hidden)] was unchanged during this period of storage. The strength of standard nitroethylene solutions can be checked by the isolation of a colourless, crystalline adduct, m.p. 197-198 °C, with tetracyclone.

Whilst phosphite esters react with nitroethylene in benzene to give complex mixtures, reactions in benzenet-butyl alcohol lead cleanly to novel 2-nitroethylphosphonates. Thus, when nitroethylene (75 mmol) in dry benzene (55 ml) was admixed gradually with P(OMe)₃ (60 mmol) in dry t-butyl alcohol (100 ml) at room temperature with stirring, the reaction was complete in 9 h (t.l.c.) and evaporation of the solvents followed by distillation gave an 88% yield of dimethyl 2-nitroethylphosphonate (1) (b.p. $124 \,^{\circ}$ C, $0.05 \,\text{mmHg}$), see equation (1).

$$(MeO)_{3}P + H_{2}C=CHNO_{2} \xrightarrow{Bu^{t}OH-benzene} (MeO)_{2}P(:O)CH_{2}CH_{2}NO_{2} \quad (1)$$
(1)

Satisfactory analytical and spectral data were obtained for (1): i.r., ν_{max} (neat) 1560, 1380, 1252, and 1040 cm^-1, ^1H n.m.r. $\delta(\text{CDCl}_3)$ 2.6 (2H, m), 3.8 (6H, d, J 12 Hz), and 4.66 (2H, m); ¹³C n.m.r. δ (CDCl₃) 22·21 (d, J_{C-P} 142 Hz), 52·35 (d, J_{C-P} 6 Hz), and 68.85 (d, J_{C-P} 0.8 Hz) p.p.m.³

The exclusive formation of (1) involving a Michael addition of P¹¹¹ is particularly noteworthy in view of the well known tendency of reagents such as phosphites to bring about deoxygenation of the nitro group. A similar course was followed with (PhO)₃P to give a 65% yield of crystalline diphenyl 2-nitroethylphosphonate, m.p. 62- $63\ ^\circ\mathrm{C.}$ Triethyl and tri-isopropyl phosphites also gave the corresponding 2-nitroethylphosphonates.[‡]

Proton exchange of (1) in MeOH-NaOMe, monitored by ¹H n.m.r. spectroscopy, demonstrated clean formation of the nitronate (2), but did not affect the other acidic site of (1), see equation (2).

$$(MeO)_{2}P(:O)CH_{2}CH_{2}NO_{2} \rightarrow (MeO)_{2}P(:O)CH_{2}CH=N \qquad (2)$$
(1)
(2)

A typical procedure for proton exchange was as follows. Compound (1) was stirred at room temperature for 3 h with 1 equiv. of NaOMe in dry MeOH. The solvent was evaporated and the nitronate salt was washed with dry diethyl ether and dissolved in cold D₂O. The ¹H n.m.r. spectrum was clean and showed a 2H multiplet due to the P-CH₂ group, although there was no signal for the CH₂-NO₂ group.

dianion can be generated in NaH-DME-The (DME = 1, 2-dimethoxyethane) as follows. A dry DME solution of (1) was mixed with an excess of NaH. The grey precipitate was stirred overnight, washed with dry benzene and the residue treated with D₂O to give deuteriated (2) which was immediately quenched with cold dil. H_2SO_4 . Extraction with CH_2Cl_2 gave deuteriated (1) whose ¹H n.m.r. spectrum (using the $-\mathrm{C}H_2\mathrm{NO}_2$ and $-\mathrm{O}Me$ peaks as internal standards) showed 58% exchange of the P-CH2 protons.

Nitroethylene in solution and 2-nitroethylphosphonates are potentially useful synthetic reagents and are presently being studied.

Financial assistance from C.S.I.R., U.G.C., New Delhi, is gratefully acknowledged.

(Received, 12th June 1979; Com. 615.)

‡ Satisfactory analytical and spectral (i.r. and n.m.r.) data have been obtained for this compound.

¹G. D. Buckley and C. W. Scaife, J. Chem. Soc., 1947, 1471; S. Ranganathan, D. Ranganathan, and A. K. Mehrotra, J. Amer. Chem. Soc., 1974, 96, 5261.

² This finding is at variance with earlier reports that highlighted the instability of this reagent [see ref. 1 and K. Noma, T. Okumura, and T. Sone, Chem. High Polymers (Japan), 1948, 5, 99]. ³ See G. Mavel, 'N.M.R. Studies of Phosphorus Compounds,' in 'Annual Reports on N.M.R. Spectroscopy 5B,' ed. E. F. Mooney,

Academic Press, New York, 1973.